Trinuclear Osmium Clusters as Models for Intermediates in Carbon Monoxide Reduction Chemistry. 1. Stepwise Reduction of CO to a $\mu-\mathrm{CH}_{2}$ Ligand on an Os_{3} Cluster Face

Guy R. Steinmetz, Eric D. Morrison, and Gregory L. Geoffroy*
Contribution from the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802. Received November 7, 1983

Abstract

Treatment of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ in tetrahydrofuran (THF) with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ at $0^{\circ} \mathrm{C}$ gives an unstable formyl complex $\mathrm{K}\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]$ (1). Acidification of THF solutions of 1 with aqueous $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ yields the new cluster $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ which has been spectroscopically characterized. Attempted alkylation of 1 with $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4}$ also gave $\mathrm{O}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. Methane is produced when $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ is heated under an H_{2} atmosphere, but when the mixture is heated in the absence of $\mathrm{H}_{2}, \mathrm{CO}$ loss occurs to yield $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3} \mathrm{CCO}\right)$, which has been spectroscopically characterized. The mechanism of the $\left[\mathrm{O}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$to $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ transformation is discussed as well as the possible relevance of these results to CO reduction on metal surfaces.

Numerous mechanistic schemes have been proposed for the metal-surface-catalyzed reduction of carbon monoxide. ${ }^{1-6}$ Several of these invoke migration of hydrogen to CO to give formyl intermediates which are subsequently transformed into reduced products. ${ }^{3,4}$ However, more recent work has tended to discount the intermediacy of formyls, and the CO-dissociative route ${ }^{1,6}$ now appears most popular. According to this mechanism (Scheme I) CO is assumed to dissociate upon adsorption to give surfacebound carbon species which are subsequently hydrogenated to produce surface methylene and methyl fragments. These can then oligomerize and add hydrogen to give hydrocarbon products. Although this mechanism has been called into question by some authors, ${ }^{7}$ it is supported by detailed surface-science measurements and pulse-reactor studies over the metals Co, Ru, and Ni . $6,8,9$ Also taken as support for this mechanism are experiments which apparently generate surface-bound methylenes from decomposition of $\mathrm{CH}_{2} \mathrm{~N}_{2}$, and these react with H_{2} to give product distributions similar to Fischer-Tropsch distributions over the same metals. ${ }^{10}$ Earlier experiments with $\mathrm{CH}_{2} \mathrm{CO}$ led Blyholder and Emmett ${ }^{11}$ to conclude that ketene dissociates to yield surface methylenes which initiate CO-propagated chain growth during FischerTropsch catalysis. It is generally assumed that such surface methylenes derive from hydrogenation of surface carbon generated via CO dissociation.

However, we wish to point out that surface methylenes could also arise from formyl intermediates as outlined in Scheme II. Addition of hydrogen to the oxygen atom of a surface formyl would produce a hydroxymethylene which can be further hydrogenated to give a hydroxymethyl species. Cleavage of the carbon-oxygen bond of this intermediate by hydrogen would then yield a surface-bound methylene. A mechanism of this type could explain the production of hydrocarbons over metals such as Pd and Pt for which experimental data do not support a CO-dissociative mechanism. ${ }^{, 12}$ The mechanism of Scheme II could also

[^0]Scheme I

Scheme II

explain the production of methanol observed over $\mathrm{Pd}, \mathrm{Pt}, \mathrm{Ir}$, and R^{13} since addition of hydrogen across the surface-carbon bond of the hydroxymethyl group gives this product directly.

We have attempted to model these various transformations by the use of cluster compounds. We have previously communicated results which show the organometallic feasibility of the formation of methylene ligands via reactions which model Scheme II ${ }^{14}$ and also the methylene +CO reaction to give a cluster-bound ketene ligand. ${ }^{15}$ Herein we report full details of the first of these studies in which a CO ligand of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ is transformed into a $\mu-\mathrm{CH}_{2}$ ligand in $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ (eq 1).

Experimental Section

General. $\mathrm{Os}_{3}(\mathrm{CO})_{12}{ }^{16}$ and $\mathrm{Os}_{3}(\mathrm{CO})_{12-x}\left(\mathrm{PR}_{3}\right)_{x}{ }^{17}$ where $x=1-3$ and $\mathrm{PR}_{3}=\mathrm{PMe}_{2} \mathrm{Ph}$ and $\mathrm{P}(\mathrm{OPh})_{3}$ were prepared according to literature procedures. $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ and $\mathrm{Li}\left[\mathrm{BDEt}_{3}\right]$ (Aldrich Chemical Corp.) and $\mathrm{PMe}_{2} \mathrm{Ph}$ and $\mathrm{P}(\mathrm{OPh})_{3}$ (Strem Chemical Co.) were purchased and

[^1]
used as received. Solvents were dried by standard methods and all reactions were conducted under a prepurified N_{2} atmosphere with use of standard Schlenk techniques. ${ }^{18}$ IR spectra were recorded on a Per-kin-Elmer 580 grating infrared spectrophotometer with use of $0.5-\mathrm{mm}$ NaCl solution IR cells. These were sealed with Luer-lock fittings and purged with N_{2} to record spectra of air-sensitive solutions. Electron impact (EI) mass spectra were obtained with an AEI-MS9 mass spectrometer with a source voltage of 70 eV and probe temperature in the $100-200^{\circ} \mathrm{C}$ range. NMR spectra were recorded on Bruker WP 200, Bruker WM 360, an JEOL PFT-100 NMR spectrometers, and $\mathrm{Cr}(\mathrm{acac})_{3}$ ($1.0 \mathrm{~mol} \%$) was added to ${ }^{13} \mathrm{C}$ NMR samples as a shiftless relaxation agent. ${ }^{19}$ Elemental analyses were performed by Schwartzkopf Microanalytical Laboratory, Woodside, NY.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}\right]$. A tetrahydrofuran (THF) solution of $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right](0.260 \mathrm{~mL}$ of a 1 M solution) was added via syringe to a THF suspension of $\mathrm{Os}_{3}(\mathrm{CO})_{12}(0.2032 \mathrm{~g}, 0.224$ mmol) maintained at $0^{\circ} \mathrm{C}$ by an ice-water bath. The pale yellow suspension turned light orange upon addition of $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$, and this color deepened as the $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ dissolved over the course of 0.75-1.0 h . At this point the clear orange solution showed IR bands at 2032 m , $2018 \mathrm{~m}, 1998 \mathrm{vs}, 1960 \mathrm{~m}, 1610 \mathrm{vw}$, and $1577 \mathrm{~cm}^{-1}$ and a formyl resonance at $\delta 16.0 \mathrm{~s}$ in its ${ }^{1} \mathrm{H}$ NMR spectrum, indicating the formation of K $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]$. Upon warm-up to $22^{\circ} \mathrm{C}$, this solution turned dark orange and the $1577-\mathrm{cm}^{-1}$ formyl vibration decreased in intensity as new bands grew in at $2082 \mathrm{w}, 1704 \mathrm{w}$, and $1660 \mathrm{~m} \mathrm{~cm}^{-1}$. This transformation was complete in 3-5 h. Addition of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right] \mathrm{Cl}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to this solution, followed by slow solvent concentration, gave a microcrystalline yellow precipitate of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{HOs}_{3}(\mathrm{CO})_{11}\right]$ (75.6% yield) identified by comparison of its IR spectrum ($\nu_{\mathrm{CO}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: 2032 \mathrm{w}, 2020 \mathrm{~s}, 1993$ $\mathrm{s}, 1955 \mathrm{~m}$, and $1675 \mathrm{w} \mathrm{cm}^{-1}$) to published data. ${ }^{20}$

Preparation of $\mathrm{Os}_{3}(\mathbf{C O})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. Excess $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\sim 10-20 \mathrm{~mL})$ was added dropwise to a $\mathrm{K}\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]$ solution prepared exactly as described above when the $1577-\mathrm{cm}^{-1}$ IR band was at its maximum intensity. The solution immediately turned dark red. The reaction mixture was extracted in air with $50-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the extracts were colorless. These were combined, dried over MgSO_{4}, and filtered. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent was evaporated, and the resultant orange solid was dissolved in a minimum amount of hexane. Chromatography on SiO_{2} with hexane eluant gave a faint yellow fraction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ followed by an orange fraction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. Solvent evaporation gave deep red microcrystalline $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ in 37% yield $(0.0731 \mathrm{~g}, 0.0744 \mathrm{mmol})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{O}_{11} \mathrm{Os}_{3}: \mathrm{C}, 15.92 ; \mathrm{H}$, 0.45 . Found: $\mathrm{C}, 16.14 ; \mathrm{H}, 0.23$. IR (hexane) $2116 \mathrm{w}, 2063, \mathrm{~s}, 2031 \mathrm{~s}$, $2031 \mathrm{~s}, 2010 \mathrm{~m}, 1995 \mathrm{~m}, 1920 \mathrm{vw}, 1869 \mathrm{vw} \mathrm{cm}{ }^{-1} . \mathrm{m} / \mathrm{z}: 894\left(\mathrm{M}^{+}\right)+$ fragment ions corresponding to loss of 11 CO 's and 2 H 's. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 193.4,184.0,180.9,174.3,173.9,172.6,171.9,62.5$.

In a separate experiment the $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$solution was carefully filtered at $0{ }^{\circ} \mathrm{C}$ to remove unreacted $\mathrm{Os}_{3}(\mathrm{CO})_{12}$. This solution was acidified with $\mathrm{H}_{3} \mathrm{PO}_{4}$ as above, and the organometallic products were extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated and the resultant solid washed with several portions of hexane to extract all the $\mathrm{Os}_{3}-$ $(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. What remained was essentially pure $\mathrm{Os}_{3}(\mathrm{CO})_{12}(38.0$ $\mathrm{mg}, 41.9 \mathrm{mmol})$. Evaporation of solvent from the $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ solution gave 44.7 mg (50.1 mmol) of this product.

Acidification of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{CHO}\right]^{-}$with $\mathrm{CF}_{3} \mathrm{COOD}$. Treatment of $\mathrm{Os}_{3}(\mathrm{CO})_{12}(0.1014 \mathrm{~g}, 0.112 \mathrm{mmol})$ in 30 mL of THF with a 1 M THF solution of $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right](0.150 \mathrm{~mL}, 0.150 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ resulted in an intense orange solution of $\mathrm{K}\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{CHO}\right]$ similar to that described above. After 45 min this reaction mixture was acidified dropwise

[^2]with excess $20 \% \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D} / \mathrm{D}_{2} \mathrm{O}(\sim 20 \mathrm{~mL})$. Following workup as described above, red microcrystalline $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ was isolated in 23.5% yield ($0.0236 \mathrm{~g}, 0.0264 \mathrm{mmol}$). The ${ }^{1} \mathrm{H}$ NMR and mass spectra of this sample were identical with those of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ prepared as above.

Acidification of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{CDOJ}\right.$ with $\mathrm{H}_{3} \mathrm{PO}_{4}$. Treatment of $\mathrm{Os}_{3}(\mathrm{C}$ $\mathrm{O})_{12}(0.2539 \mathrm{~g}, 280 \mathrm{mmol})$ in 30 mL of THF with a 1 M THF solution of $\mathrm{Li}\left[\mathrm{BDEt}_{3}\right](0.280 \mathrm{~mL}, 0.280 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ immediately gave an intense orange colored solution. After 10 min , this reaction mixture was acidified dropwise with excess $20 \% \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{H}_{2} \mathrm{O}(\sim 20 \mathrm{~mL})$. Following workup as described above, microcrystalline $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$ was isolated in 17.4% yield ($0.0437 \mathrm{~g}, 0.0488 \mathrm{mmol}$). $m / e: 896\left(\mathrm{M}^{+}\right)+$ fragment ions corresponding to loss of 11 CO's and two D's. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): no observable signals. ${ }^{2} \mathrm{H}$ NMR (acetone): $\delta 7.7$ (s, br), 6.6 (s, br).

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]$ with $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4}$. A THF $(10 \mathrm{~mL})$ solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$was prepared as described above from 0.152 g of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$. To this was added a suspension of $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4}$ in THF (30 mL) at $0^{\circ} \mathrm{C}$. Over the course of 0.5 h , the solution changed color from yellow-orange to dark red. This solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ evaporated, and the red-orange residue dissolved in acetone- d_{6}. The ${ }^{1} \mathrm{H}$ NMR spectrum of this solution showed only the characteristic doublets of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ at $\delta 7.75$ and 6.47.

Reaction of $\mathrm{Os}(\mathrm{CO})_{12-x}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{x}(x=1-3)$ with $\mathrm{K}\left[\mathrm{BH}(\mathbf{O}-\boldsymbol{i}-\mathrm{Pr})_{3}\right]$. Treatment of $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{PMe}_{2} \mathrm{Ph}(0.0641 \mathrm{~g}, 0.0545 \mathrm{mmol})$ in THF with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right](0.075 \mathrm{~mL}, 0.075 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ gave an orange, airsensitive solution. The IR spectrum of this solution showed bands at 2105 vw, $2067 \mathrm{w}, 2048 \mathrm{~m}, 2035 \mathrm{~m}, 2000 \mathrm{~s}, 1970 \mathrm{vs}, 1935 \mathrm{~s}$, and $1570 \mathrm{w} \mathrm{cm}^{-1}$ with the latter band suggesting the formation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CHO})\right]^{-}$. Warm-up of this solution to $22^{\circ} \mathrm{C}$ resulted in disappearance of the $1570-\mathrm{cm}^{-1}$ band, but the products were not characterized. $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ and $\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ did not react with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ under identical conditions. Excess deoxygenated $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ was added dropwise to a solution of the presumed [$\mathrm{Os}_{3}-$ $\left.(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CHO})\right]^{-}$when this species' $1570-\mathrm{cm}^{-1}$ band was at its maximum intensity $\left(\sim 45 \mathrm{~min}\right.$ at $0^{\circ} \mathrm{C}$ after addition of $\mathrm{K}[\mathrm{BH}(\mathrm{O}-i$ $\mathrm{Pr})_{3}$]). The solution immediately turned dark red and then slowly bright yellow. The solution was extracted with $50-\mathrm{mL}$ aliquots of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the aliquots were colorless. These were combined, dried over anhydrous MgSO_{4}, and filtered. Evaporation of the solvent gave a yellow powder identified as $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{PMe}_{2} \mathrm{Ph}$ by its IR ${ }^{17}$ and mass spectra. IR (hexane): $2108 \mathrm{w}, 2054 \mathrm{~s}, 2034 \mathrm{~s}, 2021 \mathrm{~s}, 2021 \mathrm{vw}, 2002 \mathrm{~m}, 1990 \mathrm{~m}, 1973$ m , and $1954 \mathrm{w} \mathrm{cm}^{-1} . m / z: 1018\left(\mathrm{M}^{+}\right)+$fragment ions corresponding to loss of 11 CO's.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{P}(\mathrm{OPh})_{3}$ and $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)_{2}$ with K -$\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$. Treatment of $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{P}(\mathrm{OPh})_{3}(0.2630 \mathrm{~g}, 0.221 \mathrm{mmol})$ in THF at $0^{\circ} \mathrm{C}$ with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right](0.260 \mathrm{~mL}, 0.26 \mathrm{mmol})$ gave an orange, air-sensitive solution which showed carbonyl bands in its IR spectrum at $2112 \mathrm{w}, 2076 \mathrm{w}, 2061 \mathrm{~m}, 2042 \mathrm{~m}, 2000 \mathrm{~s}, 1970 \mathrm{vw}, 1935$ s , and $1571 \mathrm{w} \mathrm{cm}^{-1}$. The IR band at $1571 \mathrm{~cm}^{-1}$ suggested the presence of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)(\mathrm{CHO})\right]^{-}$. Warm-up of this solution to room temperature resulted in decomposition of the formyl, but the decomposition products were not characterized. No reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{P}$ $\left.(\mathrm{OPh})_{3}\right)_{2}$ with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ occurred under identical conditions. Excess deoxygenated $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ was added to a solution of the presumed $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)(\mathrm{CHO})\right]^{-}$complex when the $1571-\mathrm{cm}^{-1} \mathrm{IR}$ band was at its maximum intensity ($\sim 45 \mathrm{~min}$ after addition of $\mathrm{K}[\mathrm{BH}-$ $\left.(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$). The solution immediately turned dark red. Extraction of the reaction mixture as described above with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave an orange solution which was dried over anhydrous MgSO_{4} and filtered and the solvent evaporated to give a yellow-orange solid. The solid was dissolved in a minimum amount of $20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}: 80 \%$ hexane and chromatographed on SiO_{2} with use of $20 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}: 80 \%$ hexane eluant. This gave a yellow band of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)$ overlapping with an orange band of Os -$(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)\left(\mu-\mathrm{CH}_{2}\right)$, tentatively characterized by its ${ }^{1} \mathrm{H}$ NMR and mass spectra. The two bands did not separate well, and the isolated $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{P}(\mathrm{OPh})_{3}$ and $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)\left(\mu-\mathrm{CH}_{2}\right)$ could not be obtained in pure form. Removal of the solvent from the largely $\mathrm{Os}_{3^{-}}$ $(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)\left(\mu-\mathrm{CH}_{2}\right)$ fraction gave a red solid with the following spectral characteristics: $m / z 1148\left(\mathrm{M}-\mathrm{CO}^{+}\right)+$fragment ions corresponding to loss of 9 CO's and 2 H 's. ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $\delta 7.4(\mathrm{~m})$, $6.51\left(\mathrm{dd}, J_{1_{\mathrm{H}-}{ }^{31} \mathrm{p}}=16.5 \mathrm{~Hz}, J_{1_{\mathrm{H}-1}{ }^{1} \mathrm{H}}=7.3 \mathrm{~Hz}\right), 6.39\left(\mathrm{~d}, J_{1_{\mathrm{H}-}{ }^{1} \mathrm{H}}=6.7 \mathrm{~Hz}\right)$

Reaction of $\stackrel{\mathrm{O}}{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ with $\mathrm{H}_{2} . \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)(7.3 \mathrm{mg})$ in 5 mL of benzene was placed in a $25-\mathrm{mL}$ Carius tube under 1 atm of H_{2} and heated to $70-80^{\circ} \mathrm{C}$ for 2 days. The gases above the sample were analyzed by connecting the Carius tube to the direct inlet port of a mass spectrometer. The mass spectrum showed only the presence of CH_{4} and H_{2}. Thermolysis of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$ under an H_{2} atmosphere under similar conditions resulted in the formation of only $\mathrm{CD}_{2} \mathrm{H}_{2}$. Thermolyses of both $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$ and $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ under an N_{2} atmo-
sphere gave no methane formation. In a quantitative experiment, a benzene solution (5 mL) of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$ (prepared from $\mathrm{Os}_{3}(\mathrm{C}-$ $\mathrm{O})_{12}$ and $\left.\mathrm{Li}\left[\mathrm{BDEt}_{3}\right] ; 0.0237 \mathrm{~g}, 0.0265 \mathrm{mmol}\right)$ was placed in a $25-\mathrm{mL}$ Carius tube under 1 atm of H_{2} and heated at $70-80^{\circ} \mathrm{C}$ for 1 week. All noncondensable gases above the reactant solution were collected with a Toepler pump. Benzene vapor was separated from these gases by distillation through an acetone-dry ice slush bath. GC analysis showed $\mathrm{CH}_{2} \mathrm{D}_{2}$ to account for $\sim 95 \%$ of the residual gas and Toepler pump analysis showed that 0.0053 mmol of $\mathrm{CH}_{2} \mathrm{D}_{2}$ was formed, corresponding to a yield of 20.1%. Chromatography and mass spectral analysis of the organometallic residues from these reactions showed the formation of small amounts of $\mathrm{Os}_{3}(\mathrm{CO})_{12}(\sim 10 \%)$ and a trace of $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\right.$ CCO). ${ }^{21}$ Most of the residue remained at the top of the column and would not elute.

Thermolysis of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ to yield $\mathrm{H}_{2} \mathrm{O}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CCO}\right)$. An orange toluene (20 mL) solution of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)(0.0644 \mathrm{~g}, 0.0721$ mmol) was placed in a $25-\mathrm{mL}$ Carius tube under reduced N_{2} pressure and heated at $75^{\circ} \mathrm{C}$ for 3 days. The solution changed color to light yellow and deposited a yellow precipitate of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$. The $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ was removed by filtration, and the filtrate was evaporated to give $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CCO}\right)^{21}$ as a pale yellow solid in 72% yield $(0.045 \mathrm{~g}$, 0.052 mmol). IR (hexane): $\nu_{\mathrm{CO}} 2121 \mathrm{w}, 2086 \mathrm{~s}, 2064 \mathrm{vs}, 2055 \mathrm{vs}, 2034$ w, $2006 \mathrm{~m}, 1994 \mathrm{~m}, 1984 \mathrm{~m} \mathrm{~cm}^{-1} . m / z 866\left(\mathrm{M}^{+}\right)+$fragment ions corresponding to loss of 10 CO 's and 2 H 's. ${ }^{1} \mathrm{H}$ NMR (benzene- $d_{6}, 22$ ${ }^{\circ} \mathrm{C}$): $\delta-20.1 \mathrm{~s}$. ${ }^{1} \mathrm{H}$ NMR monitoring showed the $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ to $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CCO}\right)$ conversion to be complete within $1-2 \mathrm{~h}$ without buildup of detectable intermediates.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ with $\mathbf{P P h}_{3}$ and $\mathrm{PMe}_{2} \mathbf{P h}$. $\mathrm{Os}_{3}(\mathrm{CO})_{11^{-}}$ $\left(\mu-\mathrm{CH}_{2}\right)$ rapidly reacts with PPh_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$ in THF solution at $22^{\circ} \mathrm{C}$ to give an orange to yellow color change. Chromatography of the PPh_{3} reaction mixture on SiO_{2} using $30: 70 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane as eluant gave four fractions which were analyzed by mass spectrometry and IR. In the order of elution they are a red band containing a small amount of unreacted $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$, a pale orange band containing a trace of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ and another unidentified compound, an orange band containing $\mathrm{Os}_{3}(\mathrm{CO})_{12}, \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right)\left(m / z 1142\left(\mathrm{M}^{+}\right)\right.$), and a compound identified as $\mathrm{OS}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left(m / z 1100\left(\mathrm{M}^{+}-\mathrm{CO}\right)+\right.$ fragment ions corresponding to loss of 9 CO's), and a brilliant orange-yellow band of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}$. The mass spectrum of the reaction mixture from $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ and excess $\mathrm{PMe}_{2} \mathrm{Ph}$ showed $\mathrm{Os}_{3}(\mathrm{CO})_{10}{ }^{-}$ $\left(\mathrm{PMePh}_{2}\right)_{2}$ as the major product with a trace of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ with $\mathrm{C}_{2} \mathrm{H}_{4}$. A saturated CDCl_{3} solution (2 mL) of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ was placed in a $5-\mathrm{mm}$ NMR tube inside a Parr Model 4564 pressure reactor. The reactor was sealed and pressurized to 1200 psi with $\mathrm{C}_{2} \mathrm{H}_{4}$ for 3 days at $22^{\circ} \mathrm{C}$. Upon depressurization, the ${ }^{1} \mathrm{H}$ NMR spectrum showed only $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ and dissolved $\mathrm{C}_{2} \mathrm{H}_{4}(\delta 5.28 \mathrm{~s})$ to be present.

Results

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with $\mathrm{K}\left[\mathrm{BH}(\mathbf{O - i}-\mathrm{Pr})_{3}\right]$. A suspension of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ in THF smoothly reacts with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ or $\mathrm{Li}\left[\mathrm{BHEt}_{3}\right]$ at $0^{\circ} \mathrm{C}$ to produce the anionic formyl complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}(\mathrm{eq} 2)$. The formyl complex is not suffi-

$$
\begin{equation*}
\mathrm{Os}_{3}(\mathrm{CO})_{12}+\left[\mathrm{BHR}_{3}\right]^{-\frac{{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}}{T H F}}\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}+\mathrm{BR}_{3} \tag{2}
\end{equation*}
$$

ciently stable to isolate as it slowly decomposes in solution to give mainly $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{11}\right]^{-}$(eq 3). This known ${ }^{20}$ cluster can be isolated as its $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]^{+}$salt in 75% yield following metathesis of such solutions with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right] \mathrm{Cl}$.
$\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-} \xrightarrow[\text { THF }]{22^{\circ} \mathrm{C}, 2-5 \mathrm{~h}} \mathrm{CO}+\left[\mathrm{HOs}_{3}(\mathrm{CO})_{11}\right]^{-}$
The formyl cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$was spectroscopically characterized. When prepared from $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$, it shows a characteristic ${ }^{1} \mathrm{H}$ NMR resonance at $\delta 16.0 \mathrm{~s}$ and a ν_{CO} stretch at $1577 \mathrm{~cm}^{-1}$, indicative of a formyl ligand. The ν_{CO} stretch shifts to $1557 \mathrm{~cm}^{-1}$ when the cluster was prepared from $\mathrm{Li}\left[\mathrm{BHEt}_{3}\right]$, indicating association of either the cation or the BR_{3} Lewis acid formed in the course of the reaction with the formyl oxygen. Addition of a 6 -fold excess of LiCl to a THF solution of K $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]$, generated from $\mathrm{K}\left[\mathrm{HB}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$, resulted
(21) (a) Sievert, A. C.; Strickland, D. S.; Shapley, J. R.; Steinmetz, G. R.; Geoffroy, G. L. Organometallics 1982, 1, 214. (b) Shapley, J. R.; Strickland, D. S.; St. George, G. M.; Churchill, M. R.; Bueno, C. Ibid. 1983, 2, 185.
in a shift of the formyl vibration from 1577 to $1557 \mathrm{~cm}^{-1}$, implying that association of the cation with the formyl ligand is more important than association of BR_{3}. A similar conclusion was reached by Winter et al. for the formyl complex $\left[\mathrm{Fe}(\mathrm{CO})_{4}(\mathrm{CH}-\right.$ $\mathrm{O})]^{-22}$ The $\left[\mathrm{O}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$cluster has also been observed by Pruett et al., ${ }^{23}$ and their spectroscopic data and observations of its thermal instability parallel those described here.

Protonation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right.$] To Yield $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. Addition of excess $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ to solutions of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$ immediately induces an orange to red color change. Workup of such protonated solutions yields $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ (eq 4). The

$$
\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}+\mathrm{H}^{+} \rightarrow \rightarrow \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)
$$

yields of this product are markedly dependent upon the reaction conditions (see below). The most reliable procedure involves monitoring the IR spectrum of a solution following reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with $\left[\mathrm{BHR}_{3}\right]^{-}$and adding the acid when the ν_{CO} stretch of the formyl ligand first begins to lose intensity. The yield also appears to be a sensitive function of the manner of acid addition; rapid addition of acid gives lower yields than when the acid is added in a dropwise fashion. In our hands $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ results in comparable yield if $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ is used as acid rather than $\mathrm{H}_{3} \mathrm{PO}_{4}$, although $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ was not reported by Pruett et al. ${ }^{23}$ to be a product of their reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}-\right.$ (CHO) $]^{-}$with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. Since our original communication of the synthesis of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ by reaction 4 , this compound has been independently synthesized by three other research groups. Both Shapley et al. ${ }^{24}$ and Johnson, Lewis et al. ${ }^{25}$ reported its preparation by the addition of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ (eq 5), and Deeming et al. ${ }^{26}$ observed this compound to result from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}$ with ketene (eq 6). Its $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{CH}_{3} \mathrm{CN}\right)+\mathrm{CH}_{2} \mathrm{~N}_{2} \rightarrow$

$$
\begin{equation*}
\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)+\mathrm{N}_{2}+\mathrm{CH}_{3} \mathrm{CN} \tag{5}
\end{equation*}
$$

$\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}+\mathrm{CH}_{2} \mathrm{CO} \rightarrow$

$$
\begin{equation*}
\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)+2 \mathrm{CH}_{3} \mathrm{CN} \tag{6}
\end{equation*}
$$

characterization has thus been rather extensive, including a partial X-ray diffraction study by Churchill et al. ${ }^{27}$ Crystals of the complex were severely disordered, but the structure indicated by the diffraction data was that which we initially deduced from its spectral properties, drawn below for illustration.

The mass spectrum of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ and its C, H analysis are consistent with the formulation given. Its IR spectrum shows bands in the terminal $\nu_{\text {co }}$ region and an extremely weak band at $1869 \mathrm{~cm}^{-1}$ assigned to the bridging CO. This band has less than 1% of the relative intensity of the most intense ν_{CO} band, and can only be unambiguously observed in concentrated solutions or by the use of an FT/IR spectrophotometer.
The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ is shown in Figure 1. It shows two equal intensity doublets at $\delta 7.75$ and
(22) Winter, S. R.; Cornett, G. W.; Thompson, E. A. J. Organomet. Chem. 1977, 133, 339.
(23) (a) Pruett, R. L.; Schoening, R. C.; Vidal, J. L.; Fiato, R. A. J. Organomet. Chem. 1979, 182, C57. (b) Schoening, R. C.; Vidal, J. L.; Fiato, R. A. Ibid. 1981, 206, C43.
(24) Shapley, J. R.; Sievert, A. C.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1981, 103, 6975.
(25) Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Sankey, S. W. J. Organomet. Chem. 1982, 231, C65.
(26) Arce, A. J.; Demming, A. J. J. Chem. Soc., Chem. Commun. 1982, 364.
(27) Churchill, M. R.; Wasserman, H. J. Inorg. Chem. 1982, $2 l, 825$.

$\delta \mathrm{ppm}$
Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ in CDCl_{3} solution,
$6.47\left(J_{\mathrm{l}_{-}-{ }^{1} \mathrm{H}}=7.2 \mathrm{~Hz}\right)$ assigned to the two nonequivalent protons of the methylene ligand. The ${ }^{13} \mathrm{C}$ NMR spectrum is shown in Figure 2. The seven resonances in the δ 171-193 region are assigned to the carbonyl ligands and show an approximate intensity ratio of $1: 1: 1: 2: 2: 2 ; 2$, consistent with the structure drawn. This resonance pattern is remarkably similar to the ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{11}\right]^{-20}$ which has a structure similar to Os_{3} (CO) ${ }_{11}\left(\mu-\mathrm{CH}_{2}\right)$ except with the bridging hydride ligand replacing the bridging methylene group. The ${ }^{13} \mathrm{C}$ NMR spectrum also shows a pseudo triplet at $\delta 62.5$, but selective decoupling experiments show this to be a doublet of doublets (Figure 1). Thus, decoupling of proton H_{A} by irradiation of the $\delta 6.47^{1} \mathrm{H}$ NMR resonance causes the ${ }^{13} \mathrm{C}$ NMR spectrum to show a doublet at $\delta 62.5$ with $J_{1 \mathrm{HB}-{ }^{-13} \mathrm{C}}=147 \mathrm{~Hz}$. Likewise, a doublet at $\delta 62.5$ with $J_{1 \mathrm{HA}_{-}{ }^{13} \mathrm{C}}$ $=144 \mathrm{~Hz}$ results when the H_{B} proton is selectively decoupled.
The $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ complex is quite stable. It shows no appreciable air sensitivity either in solution or in the solid state, and it is quantitatively recovered following chromatography on SiO_{2}. It is soluble in all common organic solvents including saturated hydrocarbons such as pentane.

Experiments To Elucidate the Mechanism of Formation of $\mathrm{Os}_{3}(\mathbf{C O})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. 1. Labeling Experiments. In order to determine the source of the hydrogens in the $\mu-\mathrm{CH}_{2}$ ligand of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$, the two H / D labeling experiments shown in eq 7 and 8 were conducted. Thus when $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ was reacted

$$
\begin{align*}
& \mathrm{Os}_{3}(\mathrm{CO})_{12}+\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]^{-} \rightarrow \frac{\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{D}}{\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)} \tag{7}\\
& \mathrm{Os}_{3}(\mathrm{CO})_{12}+\left[\mathrm{BDEt}_{3}\right]^{-} \rightarrow \xrightarrow{\mathrm{H}_{3} \mathrm{PO}_{4}} \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right) \tag{8}
\end{align*}
$$

with $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ followed by protonation with acetic acid- d, the isolated sample of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ showed a mass spectrum identical with that obtained when acidification was conducted with $\mathrm{H}_{3} \mathrm{PO}_{4}$; i.e., the most intense peak in the envelope for the parent ion was at $m / z 894$. However, when the reduction was carried out with triethylborodeuteride and then acidified with $\mathrm{H}_{3} \mathrm{PO}_{4}$ (eq 8) the product isolated showed its most intense peak in the parent ion envelope at $m / z 896$, two mass units higher than $\mathrm{Os}_{3}-$ $(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$, implying the formation of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$. This product did not show any signals in its ${ }^{1} \mathrm{H}$ NMR spectrum, but its ${ }^{2} \mathrm{H}$ NMR spectrum showed two broad singlets at $\delta 7.7$ and 6.6, consistent with its formulation.
2. Timing of Reagent Addition. Several experiments were conducted to determine which solution species leads to Os_{3} -$(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. First it was observed that no $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ formed if acidification of the solution was conducted after the IR

Figure 2. ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectra} \mathrm{of} \mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{CH}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$: (a) fully ${ }^{1} \mathrm{H}$ coupled; (b) ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}_{\mathrm{A}}\right\}$; and (c) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}_{\mathrm{B}}\right\}$. Resonances at 171 and 183 ppm marked with an asterisk are due to $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ impurity.
spectrum indicated that all of the $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$had decayed to $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{11}\right]^{-}$. Instead, $\mathrm{HOs}_{3}(\mathrm{CO})_{10}(\mathrm{OH})^{16}$ and $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}{ }^{28}$ were the primary products identified, as had been previously found for acidification of pure samples of $\left[\mathrm{HOs}_{3}(\mathrm{C}\right.$ -$\left.\mathrm{O})_{11}\right]^{-20}$ Furthermore, little $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ could be isolated if the acid was added immediately after the $\mathrm{K}\left[\mathrm{BH}\left(\mathrm{O}-i-\mathrm{Pr}_{3}\right]\right.$ addition and before the IR spectrum indicated significant formation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$. Unreacted $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ was the major product from such reaction. In our numerous syntheses of Os-$(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ we have found that the best yields result when acidification is carried out when the IR spectrum indicates $\left.\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{CHO}\right)\right]^{-}$to be present at its maximum concentration. These several experiments strongly implicate $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$ as the species which is protonated and which leads to $\mathrm{Os}_{3}{ }^{-}$ (CO) ${ }_{11}\left(\mu-\mathrm{CH}_{2}\right)$.
3. Observations. The presence of excess $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i \text { - } \mathrm{Pr})_{3}\right]$ was found not to increase the yield of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ isolated; only the rate of formation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$was enhanced. This suggests that $\mathrm{K}\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]$ is not involved in the reaction to produce $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ any further than forming the initial formyl precursor complex. Excess borohydride is likely to be immediately destroyed upon initial addition of acid.

It was observed that $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ always forms when the acid is added, even though the IR spectrum of the solution prior to acidification shows none to be present. In a careful quantitative experiment, 0.84 equiv of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ was isolated compared to the amount of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ formed, suggesting that the reactions following acidification of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$produce an equivalent of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ for each equivalent of $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mu-$ CH_{2}) produced.

The methylene-bridged cluster $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ also formed when solutions of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$were allowed to react with $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{O}\right] \mathrm{BF}_{4}$ instead of $\mathrm{H}_{3} \mathrm{PO}_{4}$. This observation is consistent

[^3]with the mechanism to be discussed shortly in which the function of the acid is to protonate the formyl oxygen and remove it as $\mathrm{H}_{2} \mathrm{O}$. A similar transformation with $\mathrm{CH}_{3}{ }^{+}$can occur to methylate the formyl oxygen and subsequently transform it into dimethyl ether.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ with H_{2} and $\mathrm{D}_{2} . \mathrm{Os}_{3}(\mathrm{CO})_{11^{-}}$ $\left(\mu-\mathrm{CH}_{2}\right)$ reacts with H_{2} and D_{2} to yield significant quantities of CH_{4} and $\mathrm{CH}_{2} \mathrm{D}_{2}$, respectively (eq 9). Likewise, CD_{4} and $\mathrm{CH}_{2} \mathrm{D}_{2}$

$$
\begin{equation*}
\mathrm{Os}_{8}(\mathrm{CO})_{11}\left(\mu-\mathrm{ClH}_{2}\right) \frac{70-80^{\circ} \mathrm{C}}{2 \text { dilys }} \xrightarrow{\xrightarrow{\mathrm{D}_{2}} \mathrm{CH}_{4}} \mathrm{CH}_{2} \mathrm{D}_{2} \tag{9}
\end{equation*}
$$

result from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$ with D_{2} and H_{2}, respectively. A quantitative experiment showed that the amount of $\mathrm{CH}_{2} \mathrm{D}_{2}$ formed from the reaction of H_{2} with $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right)$ was 20.1% of that expected on the basis of the quantity of $\mathrm{Os}_{3^{-}}$ (CO) ${ }_{11}\left(\mu-\mathrm{CD}_{2}\right)$ consumed. Mass spectral and chromatographic analyses of the organometallic residues from these reactions showed the presence of a small amount of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ and $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO}){ }_{9}\left(\mu_{3}-\mathrm{CCO}\right)^{21}$ (see below). A large quantity of material would not elute from the SiO_{2} chromatography column and thus was not identified.

In separate experiments it was observed that if $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mu-$ CH_{2}) was left under H_{2} pressure (1500 psi) at room temperature, a slow reaction occurred to yield not only CH_{4} but also $\mathrm{CH}_{3} \mathrm{CHO}$ (eq 10). The acetaldehyde product of this reaction likely forms

$$
\begin{equation*}
\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right) \xrightarrow[\substack{20-22^{\circ} \mathrm{C} \\ \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{CHO}}]{\mathrm{H}_{2}(1500 \mathrm{psi})} \tag{10}
\end{equation*}
$$

from hydrogenation of a ketene-substituted cluster which we have shown derives from $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ by CO insertion. ${ }^{15}$ This species, $\mathrm{Os}_{3}(\mathrm{CO})_{12}\left(\mu-\mathrm{CH}_{2} \mathrm{CO}\right)$, reacts with H_{2} to form $\mathrm{CH}_{3} \mathrm{CHO}{ }^{29}$

Thermolysis of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. Although $\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mu-$ CH_{2}) is quite stable at ambient temperatures, it does slowly transform when heated to $70-80^{\circ} \mathrm{C}$ under N_{2} for several hours. The product isolated in 72% yield from such a reaction is $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CCO}\right)$ (eq 11). This species was also obtained

by Shapley and co-workers ${ }^{2 l a}$ from the identical thermolysis and has been fully characterized by the Churchill group by an X-ray diffraction study. ${ }^{216}$ The latter showed the structure given in eq 11 with two bridging hydrides and the $\mu_{3}-\mathrm{CCO}$ ligand standing upright, perpendicular to the Os_{3} plane. The spectral data are consistent with this structure. The complex shows no methylene protons in its ${ }^{1} \mathrm{H}$ NMR spectrum but instead equivalent hydrides at $\delta-20.1 \mathrm{~s}$. In order to determine if this species is an intermediate in the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ with H_{2} to give CH_{4}, in which it was obtained in small quantity, this complex was allowed to react with H_{2} under conditions identical with those of eq 9 . However, no reaction was observed, and $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CCO}\right)$ was recovered unchanged.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ with $\mathbf{P P h}_{3}, \mathbf{P M e}_{2} \mathbf{P h}$, and $\mathrm{C}_{2} \mathbf{H}_{4}$. The complex $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ rapidly reacts with both PPh_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$ in THF solution at $22^{\circ} \mathrm{C}$, but simple substituted $\mu-\mathrm{CH}_{2}$ derivatives do not form in good yield. The reaction with PPh_{3} was studied in most detail. When monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, the $\mu-\mathrm{CH}_{2}$ doublets at $\delta 7.75$ and 6.47 rapidly disappeared following the addition of PPh_{3}, and a new singlet grew

[^4]in at $\delta 3.58$ with intensity about the same as the integrated sum of the $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ protons. However, we have not been able to conclusively identify this species although it may well be $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)$. It does not survive chromatography which instead led to the isolation of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right), \mathrm{Os}_{3}(\mathrm{C}$ $\mathrm{O})_{12}, \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right)$, and $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}$. The mass spectrum of the $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right)$ fraction showed a low intensity ion at $m / z 1100$, consistent with the presence of a small amount of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)$ if this is the $\left(\mathrm{M}^{+}-\mathrm{CO}\right)$ ion.

Following Norton et al.' s^{30} observation of the facile reaction of $\mathrm{Os}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{CH}_{2}\right)$ with $\mathrm{C}_{2} \mathrm{H}_{4}$ to give the diosmacyclopentane derivative $\mathrm{Os}_{2}(\mathrm{CO})_{8}\left(\mu-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, we anticipated a similar reaction with $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. However, $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ does not react with $\mathrm{C}_{2} \mathrm{H}_{4}$ even when left for 3 days under 1200 psi of this reagent.

Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12-x}\left(\mathrm{PR}_{3}\right)_{x}(x=1-3)$ Derivatives with $\mathbf{K}\left[\mathbf{B H}(\mathbf{O}-i-\mathrm{Pr})_{3}\right]$. Although $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}, \mathrm{Os}_{3}(\mathrm{CO})_{9}-$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$, and $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}_{2}$ do not react with $\mathrm{K}[\mathrm{BH}-$ $\left.(\mathrm{O}-i-\mathrm{Pr})_{3}\right], \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$ and $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}$ do (see Experimental Section). IR spectra of solutions of the latter complexes when treated with $\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]^{-}$show formyl ν_{CO} vibrations at 1570 and $1571 \mathrm{~cm}^{-1}$, respectively (eq 12 . However,

$$
\begin{gathered}
\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{~L}+\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]^{-} \rightarrow\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CHO}) \mathrm{L}\right]^{-} \\
\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{OPh})_{3}
\end{gathered}
$$

no $\mu-\mathrm{CH}_{2}$ derivative could be characterized upon acidification of solutions of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CHO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]^{-}$; only $\mathrm{Os}_{3}(\mathrm{CO})_{11^{-}}$ ($\mathrm{PMe}_{2} \mathrm{Ph}$) was isolated from such a reaction. However, protonation of solutions of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{CHO})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right]^{-}\right.$gave a compound tentatively identified as $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{CH}_{2}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}$. This species could not be isolated in pure form as it forms in low yield and does not separate well from $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}$ upon chromatography. Its mass spectrum and ${ }^{1} \mathrm{H}$ NMR spectrum are consistent with the indicated formulation. The latter indicates the presence of two isomers; three doublets are observed at $\delta 6.55$, 6.47 , and 6.39 with ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ coupling constants of $7.3,7.3$, and 6.7 Hz , respectively. These all fall within the spectral range of the $\mu-\mathrm{CH}_{2}$ protons of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$. The two doublets at $\delta 6.55$ and 6.47 are attributed to nonequivalent protons of one isomer of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{CH}_{2}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}$. The doublet at $\delta 6.39$ is apparently the resonance of one proton of a second isomer with the resonance of the second proton of this isomer obscured by the phenyl resonances of the $\mathrm{P}(\mathrm{OPh})_{3}$ ligand in the $\delta 7.8-7.3$ region.

Discussion

The unusual aspect of this study is the formation of the methylene-bridged product $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ from protonation of the formyl cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$. While the protonation reactions of many mononuclear formyl complexes and a few binuclear formyl compounds have been well studied, ${ }^{31}$ this reaction represents the only example so far reported of the formation of a μ - CH_{2} ligand from a formyl precursor. Protonation of mononuclear formyl complexes usually results first in the formation of hydroxymethylene intermediates which in at least one case have been isolated. ${ }^{32}$ In most instances these either decompose to release formaldehyde ${ }^{33}$ or react further with the formyl complex to give other derivatives. ${ }^{31,34}$ Consequently, considerable effort was made to probe the mechanism of this unusual transformation. The mechanism shown in Scheme III is most consistent with our data and is in accord with mechanisms previously indicated for reactions of mononuclear formyl complexes. ${ }^{31-34}$ Protonation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$must occur on the formyl oxygen to give an
(30) Motyl, K. M.; Norton, J. R.; Schauer, C. K.; Anderson, O. P. J. Am. Chem. Soc. 1982, 104, 7325.
(31) Gladysz, J. A. Adv. Organomet. Chem. 1982, 20, 1.
(32) Tam, S.; Lin, G.; Wong, W.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141. (33) Collman, J. P.; Winter, S. R. J. Am. Chem. Soc. 1973, $95,4089$. (34) (a) Casey, C. P.; Neumann, S. M. J. Am. Chem. Soc. 1978, 100 , 2544. (b) Casey, C. P.; Andrews, M. A.; McAlister, D. R.; Rinz, J. E. Ibid. 1980, 102, 1927.

Sclieme III

intermediate hydroxymethylene complex. Such a species would be expected to be fairly acidic, in accordance with the known acidity of the few hydroxycarbene complexes previously studied, ${ }^{35}$ and it is likely in equilibrium with the formyl complex. In any case, the next step presumably involves reaction between the hydroxymethylene intermediate and an equivalent of the formyl complex. Mononuclear formyl complexes have been demonstrated to be potent hydride transfer reagents, ${ }^{31,34 a, 36}$ and thus this reaction would yield the proposed hydroxymethyl intermediate of Scheme III. It also yields an equivalent of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$, consistent with the experimental observation of the latter cluster being produced upon protonation of the formyl complex. At this stage the anionic hydroxymethyl cluster is in solution with excess acid; protonation of the hydroxymethyl oxygen and its loss as $\mathrm{H}_{2} \mathrm{O}$ would generate the methylene ligand, which in the final product ends up in the more stable bridging position. Note that both of the methylene hydrogens come from the borohydride reducing agent, via the intermediacy of the formyl complex, consistent with the labeling experiments discussed in the Results section. The function of the acid is then to remove the carbonyl oxygen as water.

The overall mechanism of Scheme III is similar to mechanisms proposed by Casey and Neumann ${ }^{34 \mathrm{a}}$ for the formation of methanol upon protonation of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{Fe}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}(\mathrm{CHO})\right]$ and Gladysz et al. ${ }^{32}$ for the formation of $\mathrm{CpReNO}\left(\mathrm{PPh}_{3}\right) \mathrm{CH}_{3}$ upon protonation of $\mathrm{CpReNO}\left(\mathrm{PPh}_{3}\right)(\mathrm{CHO})$. The difference in the triosmium vs. mononuclear iron and rhenium formyl chemistry is that a second metal (Os) is in close proximity when the CH_{2} ligand is generated, and a stable bridging $\mu-\mathrm{CH}_{2}$ structure can be produced. Bridging methylenes are well-known to be more stable than terminal CH_{2} ligands, ${ }^{37}$ It is interesting that the results reported herein differ from those described by Pruett and co-workers. ${ }^{23}$ These workers did acidify $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]^{-}$ solutions with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and observed formation of $20-30 \%$ methanol, but no mention was made of the cluster products from their reactions nor the manner in which the methanol was characterized. In our hands, $\mathrm{CH}_{3} \mathrm{OH}$ was not observed by gaschromatographic techniques upon acidification with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, but $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{CH}_{2}$ was produced in a yield similar to that obtained upon acidification with $\mathrm{H}_{3} \mathrm{PO}_{4}$. Also, no $\mathrm{CH}_{3} \mathrm{OH}$ was detected when protonation was carried out with $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Another mechanism that is not inconsistent with the experimental observations and cannot be excluded from consideration is that shown in Scheme IV. Excess acid could protonate the hydroxylmethyl intermediate, followed by loss of $\mathrm{H}_{2} \mathrm{O}$ and for-

[^5]Scheme IV

mation of the carbyne cluster 3. Reaction of $\mathbf{3}$ with an equivalent of 1 would yield $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ and an equivalent of $\mathrm{Os}_{3}-$ $(\mathrm{CO})_{12}$. While we cannot rule out such a mechanism, we view it as unlikely. Casey and co-workers ${ }^{38}$ have shown that reaction of $\mathrm{Cp}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}\left(\mu-\mathrm{CH}_{2}\right)$ with $\mathrm{Ph}_{3} \mathrm{C}^{+}$leads to hydride abstraction and yields the carbyne-bridged complex $\left[\mathrm{Cp}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mu-\mathrm{CH})\right]^{+}$. Treatment of the latter with $\left[\mathrm{HBEt}_{3}\right]^{-}$gave regeneration of $\mathrm{Cp}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}\left(\mu-\mathrm{CH}_{2}\right)$. If 3 were a reasonable intermediate en route to $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$, it should form upon reaction of this latter complex with $\mathrm{Ph}_{3} \mathrm{C}^{+}$. Addition of $\left[\mathrm{Ph}_{3} \mathrm{C}\right] \mathrm{BF}_{4}$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ gave slow deposition of a yellow precipitate which did not yield $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$ when later treated with $\left[\mathrm{BH}(\mathrm{O}-i-\mathrm{Pr})_{3}\right]^{-}$. Instead, a complex mixture of presently unidentified compounds was obtained. Our inability to affect the clean $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right) \rightleftharpoons\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CH})\right]^{+}(3)$ conversion suggests that 3 is not a likely intermediate en route to $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$.
The results described herein may be of relevance to the mechanism(s) of CO reduction on metal surfaces. While sur-face-bound methylene ligands have been implicated as key intermediates in hydrocarbon production from $\mathrm{CO} / \mathrm{H}_{2}$, they have generally been assumed to arise via the CO -dissociative path of Scheme I. However, our results show that $\mu-\mathrm{CH}_{2}$ ligands can also derive from formyl precursors and give support to the nondissociative mechanism outlined in Scheme II. While this clustersurface chemistry analogy is not perfect, since the $\mathrm{CO} \rightarrow \mathrm{CH}_{2}$ conversion described herein requires $\mathrm{H}^{-} / \mathrm{H}^{+}$equivalents instead of H_{2} as does $\mathrm{CO} / \mathrm{H}_{2}$ catalysis, it does show that transformations such as those outlined in Scheme II are not unreasonable and should be considered when discussing possible CO reduction mechanisms.

Acknowledgment. This research was supported by the Department of Energy, Office of Basic Energy Sciences. G.L.G. gratefully acknowledges the Camille and Henry Dreyfus Foundation for a Teacher-Scholar Award (1978-1983) and the John Simon Guggenheim Memorial Foundation for a fellowship (1982-1983).

Registry No. $\left.\mathrm{Os}_{3}(\mathrm{CO})_{12}, 15696-40-9 ; \mathrm{K}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{CHO})\right]$, 89378-$11-0 ;\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{HOs}_{3}(\mathrm{CO})_{11}\right], 61182-08-9 ; \mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)$, 77208-32-3; $\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CD}_{2}\right), 89378-12-1 ; \mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{PMe}_{2} \mathrm{Ph}$, 36885-43-5; $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathrm{CHO})\right]^{-}, 89378-13-2 ;\left[\mathrm{Os}_{3}(\mathrm{CO})_{0}(\mathrm{P}-\right.$ $\left.\left.(\mathrm{OPh})_{3}\right)(\mathrm{CHO})\right]^{-}, 89378-14-3 ; \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{P}(\mathrm{OPh})_{3}\right)\left(\mu-\mathrm{CH}_{2}\right), 89378-$ $15-4 ; \mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CCO}\right), 83585-34-6 ; \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)$, 89378-16-5; $\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{P}(\mathrm{OPh})_{3}, 89378-17-6 ; \mathrm{CO}, 630-08-0$.
(38) Casey, C. P.; Fagan, P. J.; Miles, W. H. J. Am. Chem. Soc. 1982, 104, 1134.

[^0]: (1) Fisher, F.; Tropsch, H. Brennst.-Chem. 1926, 7, 97. Fischer, F.; Tropsch, H. Chem. Ber. 1926, 59, 830.
 (2) (a) Kummer, J. T.; Emmett, P. H. J. Am. Chem. Soc. 1953, 75, 5177. (b) Anderson, R. B.; Seligman, B.; Schultz, J. F.; Kelley, R.; Elliott, M. A. Ind. Eng. Chem. 1952, 44, 391.
 (3) Pichler, H.; Schultz, H. Chem. Ing. Tech. 1970, 42, 1162.
 (4) Henrici-Olive, G.; Olive, S. Angew. Chem., Int. Ed. Engl. 1976, 15, 136.
 (5) Huang, C. P.; Richardson, J. T. J. Catal. 1978, 51, 1.
 (6) (a) Araki, M.; Ponec, V., J. Catal. 1976, 44, 439. (b) van Barneveld, W. A. A.; Ponec, V. Ibid. 1978, 51, 426.
 (7) (a) Henrici-Olivè, G.; Olivé, S. J. Mol. Catal. 1982,16, 111. (b) Ibid. 1983, $18,367$.
 (8) (a) Biloen, P.; Helle, J. N.; Sachtler, W. M. H. J. Catal. 1979, 58, 95. (b) Tanaka, K.; Yaegashi, I.; Aoruma, K. J. Chem. Soc., Chem. Commun. 1982, 938.
 (9) Rabo, J. A.; Risch, A. P.; Poutsma, M. L. J. Catal. 1978, 53, 294. (10) (a) Brady, R. C.; Pettit, R. J. Am. Chem. Soc. 1980, 102, 6181. (b) Brady, R. C.; Pettit, R. Ibid. 1981, 103, 1287.
 (11) Blyholder, G.; Emmett, P. H. J. Phys. Chem. 1959, 63, 962; 1960, 64, 470 .

[^1]: (12) Vannice, M. A.; Twu, C. C. J. Catal. 1983, 82, 213.
 (13) (a) Poutsma, M. L.; Elek, L. F.; Ibarbia, P. A.; Risch, A. P.; Rabo, J. A. J. Catal. 1978, 52, 157. (b) Ichikawa, M. Bull. Chem. Soc. Jpn. 1978, 51, 2268. (c) Ellgen, P. C.; Bhasin, M. M.; U. S. Patents 4014913 March 1977, 4096164 June 1978, and 4162262 July 1979. (d) See also: Klier, K. Adv. Catal. 1982, 31, 243.
 (14) Steinmetz, G. R.; Geoffroy, G. L. J. Am. Chem. Soc. 1981, 103, 1278.
 (15) Morrison, E. D.; Steinmetz, G. R.; Geoffroy, G. L.; Fultz, W. C.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 105, 4104.
 (16) Johnson, B. F. G.; Lewis, J.; Kilty, P. A. J. Chem. Soc. A 1968, 2859.
 (17) Deeming, A. J.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc. A 1970, 897.

[^2]: (18) Shriver, D. F. "The Manipulation of Air-Sensitive Compounds"; McGraw-Hill: New York, 1969.
 (19) Gansow, O. A.; Burke, A. R.; La Mar, G. N. J. Chem. Soc., Chem. Commun. 1972, 456.
 (20) Eady, C. R.; Johnson, B. F. G.; Lewis, J.; Malatesta, M. C. J. Chem. Soc., Dalton Trans. 1978, 1358.

[^3]: (28) Knox, S. A. R.; Koepke, J. W.; Andrews, M. A.; Kaesz, H. D. J. Am. Chem. Soc. 1975, $97,3942$.

[^4]: (29) Morrison, E. D.; Steinmetz, G. R.; Geoffroy, G. L.; Fultz, W. C.; Rheingold, A. L., submitted for publication.

[^5]: (35) (a) Felkin, H.; Meunier, B.; Pascard, C.; Prange, T. J. Organomet. Chem. 1977, 135, 361. (b) Moss, J. R.; Green, M.; Stone, F. G. A. J. Chem Soc., Dalton Trans. 1973, 975.
 (36) Gladysz, J. A.; Tam, W. J. Am. Chem. Soc. 1978, 100, 2545.
 (37) Herrmann, W. A. Adv. Organomet. Chem. 1982, $20,159$.

